On families of isospectral Sturm - Liouville boundary value problems
نویسندگان
چکیده
منابع مشابه
Existence of multiple solutions for Sturm-Liouville boundary value problems
In this paper, based on variational methods and critical point theory, we guarantee the existence of infinitely many classical solutions for a two-point boundary value problem with fourth-order Sturm-Liouville equation; Some recent results are improved and by presenting one example, we ensure the applicability of our results.
متن کاملLecture 28: Sturm-Liouville Boundary Value Problems
In this lecture we abstract the eigenvalue problems that we have found so useful thus far for solving the PDEs to a general class of boundary value problems that share a common set of properties. The so-called Sturm-Liouville Problems define a class of eigenvalue problems, which include many of the previous problems as special cases. The S − L Problem helps to identify those assumptions that ar...
متن کاملStudies on Sturm-Liouville boundary value problems for multi-term fractional differential equations
Abstract. The Sturm-Liouville boundary value problem of the multi-order fractional differential equation is studied. Results on the existence of solutions are established. The analysis relies on a weighted function space and a fixed point theorem. An example is given to illustrate the efficiency of the main theorems.
متن کاملStudies on Sturm-Liouville boundary value problems for multi-term fractional differential equations
...
متن کاملOn the Construction of Isospectral Vectorial Sturm-Liouville Differential Equations
We extend the idea of Jodeit and Levitan [3] for constructing isospectral problems of the classical scalar Sturm-Liouville differential equations to the vectorial Sturm-Liouville differential equations. Some interesting relations are found.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ufa Mathematical Journal
سال: 2020
ISSN: 2074-1863,2074-1871
DOI: 10.13108/2020-12-2-28